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Abstract

Drones capture the interest of science and industry in countless domains. These
autonomous flying robots can be deployed to observe wildlife, take samples, or
monitor the environment from up high. Missions like these would benefit from
longer flight durations: to take more measurements or to observe their subject for
longer. Solar cells on the drone can help with this. However, they cannot extend
mission lengths indefinitely. To do so, the drone would still need to land now and
then to recharge its batteries. The high-level planning software necessary for this
has not yet been discussed in the literature.

This dissertation addresses this by developing a system that can autonomously
select suitable landing sites to recharge on multi-hop routes. To achieve this,
a semantic segmentation algorithm was trained to identify lakes and buildings
in aerial imagery. The output from this network is used by a newly developed
optimized visibility graph algorithm. With the constructed graph, a novel path
planner is able to generate multi-hop shortest routes to any location, with recharge
stops on lakes when necessary.

The semantic segmentation algorithm was selected as the best of nine potential
networks, and achieved an 96% accuracy. Furthermore, the optimized visibility
graph algorithm is able to process large maps more than two times faster than
the standard method, while the planner algorithm can always generate a near-
optimum path. This complete high-level planning system can create a map from
just aerial imagery and use it to generate multi-hop paths with recharge stops.
When deployed on an aquatic UAV with solar cells, this platform will be capable
of extending research missions from just hours to multiple days.
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Chapter 1

Introduction

This opening chapter discusses the background behind this dissertation. It also
presents a problem description that will guide the later Literature Review and
Design & Implementation chapters (chapters 2 & 3).

1



1.1 Background

Small unoccupied aerial vehicles (UAVs, colloquially ‘drones’1) have myriad appli-
cations in biological and environmental research. From remote sensing applications
like counting cattle, kangaroos, or penguins2 and preventing poaching3, to listening
to bats4 or checking surface water quality5. They can even work together; as
communication relays6 or in a swarm7.

All of these applications would benefit from longer flight durations. One way to
achieve this is with solar/photovoltaic (PV) cells on the UAV. These cells can
recharge the drone’s batteries, both in flight and when landed. Combined with an
efficient design, a drone like this can even achieve multi-day flight (Oettershagen
et al. 2015). However, this requires excellent conditions for an extended period of
time. Eventually, the drone would always need to land; whether due to weather
conditions or simply because the battery did not last the night.

For multi-day deployments or deployments in remote areas, it might not be fea-
sible to land manually. Instead, this process needs to be autonomous. Such an
autonomous solution would allow the drone to land, recharge its batteries, and
subsequently continue its mission (illustrated in figure 1.1 below).

Figure 1.1: Mission stages of the proposed system

Even a perfect automatic landing system would still work best on large, open
spaces. This way, the system would have the chance to avoid obstacles when
landing. One ubiquitous type of open space is bodies of surface water (lakes,
ponds, canals. . . ). In many parts of the world, surface waters large enough to

1See appendix A: Drone Terminology for more information on drone/UAV terminology used
in this dissertation.

2Cattle: Andrew, Greatwood, and Burghardt 2019; Barbedo et al. 2020; Kellenberger, Volpi,
and Tuia 2017. Kangaroos: Brunton, Leon, and Burnett 2020. Penguins: Bird et al. 2020.

3Vuuren et al. 2019; Puri and Bondi 2021
4Kloepper and Kinniry 2018; Fu, Kinniry, and Kloepper 2018
5Sibanda et al. 2021Zang et al. 2012Koparan, Koc, Privette, et al. 2018
6Boyang Li et al. 2016; Chen, Feng, and Zheng 2018; Pinkney, Hampel, and DiPierro 1996
7L. He et al. 2018; Campion, Ranganathan, and Faruque 2019
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land a UAV are rarely far apart (illustrated by figure 1.2 below). They are the
perfect candidate to serve as an intermediate recharge site.

The hopping from one lake to the next to recharge is the namesake of Lakehopper,
a work-in-progress UAV and its supporting systems (e.g., ground station software,
communications). Lakehopper is meant to serve as a long-duration mission
platform for research like mentioned above.

Figure 1.2: Map of surface water bodies around Vetlanda, Sweden
Created using QGis. Map data © OpenStreetMap contributors.

1.2 Problem Description

One of the biggest puzzle pieces in Lakehopper’s design is the software system
responsible for high-level planning. This system needs to decide where to land
and how to get there. Solving this planning problem is the primary goal of this
dissertation.

1.2.1 Landing Site Selection

When Lakehopper’s battery is low and it needs to land, it has to select an appro-
priate body of surface water to land. For this, the system needs a map with all
the landable waters. This map could be constructed from existing landuse and
topographic maps8. However, maps like these do not consider overhanging vegeta-
tion or floating structures. Figure 1.3 shows two examples of this. Additionally,
surface waters are influenced by weather and seasonal changes, so ideally the map
would need several variations.

These issues can be addressed by instead using a computer vision algorithm to
identify surface water from aerial imagery. This way, only the lakes and rivers
where landing would be possible are included. With this technique, seasons can

8Candidates include OpenStreetMap (osm.org/about) and the European Commission’s Global
Surface Water project (publications.jrc.ec.europa.eu/repository/handle/JRC109054, Pekel et al.
(2016))
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Figure 1.3: Water obscured by vegetation (left) and a bridge (right)

also be taken into account because aerial imagery is available for various times
throughout the year.

Besides as a way to generate a map of landing sites beforehand, this algorithm
could also be used in-flight. Using a camera on board, it would allow the UAV to
verify the state of a site before landing and to check for obstacles like boats or
debris.

Because this dissertation is only concerned with the high-level planning software,
this second use case does not fall into scope. The first, however, does and forms
one of two components that will be implemented.

The first of these components is the ‘planner’. The planner includes the algorithm
to select a landing site from the map of surface waters. The second is the ‘vision’
component. It consists of the computer vision algorithm to identify surface water
from aerial imagery, as well as the functionality to convert detections to the
map.

1.2.2 Path Planning

After an appropriate surface water is found, the UAV would need to plan a path
to the landing site.

A direct path might cross over areas where UAV flight is forbidden, for example
around airports, military sites, or restricted areas. The path should also avoid
regions where flight is discouraged, like over built-up districts or sensitive habitats.
These areas can be recorded in the same map that the UAV uses to select a landing
site. This is illustrated in figure 1.4.

Though out of scope of this dissertation, an even more dynamic path planner
could also take into account the position of other nearby aircraft, and avoid them.
Positional data of other aircraft can be collected through receivers on the UAV
itself or through a connection to online services.

Autonomously planning a path while avoiding airspace restrictions and built-up
areas is part of the planner component.

4



Figure 1.4: Shortest flight path among obstacles, landing on
water to recharge along the route
Blue: water Brown: buildings Purple: restricted airspace

1.3 Summary of Introduction

This chapter has been an introduction to this dissertations’ background and to
the problem it aims to solve. The latter being: how can an autonomous UAV
select an appropriate landing site to recharge and plan a path to it?

This dissertation aims to solve this problem by detecting bodies of water from
aerial imagery, selecting a landing site from a map of this data, and finally planning
the path based on this map. This functionality will be split into two components:
the vision component and the planner.

Later chapters will discuss the design, implementation, and evaluation of these
components.
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Chapter 2

Literature Review

This chapter will discuss the existing literature surrounding UAVs, semantic
segmentation of aerial imagery, landing site selection, path planning, and possible
research applications. This review will be the foundation for the later chapter 3:
Design & Implementation.
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2.1 UAV Design

As discussed before, UAVs have opened up many new possibilities in research.
To provide background for, and investigate the viability of Lakehopper, existing
designs and applications will be discussed. Particular attention will be given to
aquatic drones and photovoltaics.

2.1.1 In General

There are two main types of UAVs: rotary-wing and fixed-wing. Rotary-wing
drones fly using direct upward thrust, conventionally generated by propellers (i.e.,
rotors). Fixed-wing drones instead use a power system to produce forward thrust.
This forward thrust is partially converted into vertical lift using wings. Figure 2.1
below shows examples of both types.

In general, fixed-wing drones are more efficient for long-distance flight, as well as
for larger payloads (Paredes et al. 2017). As Dong et al. (2019) and Polonelli
et al. (2020) have shown, this makes fixed-wing drones especially suitable for
remote sensing applications like those discussed in 1.1: Background.

Figure 2.1: Two UAV types: rotary (quadcopter, left) and fixed-wing
(plane, right)
CC BY 4.0 by Taras Kazantsev and CC BY 3.0 by CSIRO

When equipped with the appropriate sensors (like GPS/GNSS receivers), drones
can follow a provided path entirely autonomously1 (Hadi et al. 2014). This is
made possible by flight controller software like PX42 and ArduPilot3, which will
no doubt be an important part of the Lakehopper prototype.

1Note: ‘Autonomous flight’ in this section refers to missions high above surrounding obstacles.
‘3D’ autonomous flight among obstacles (usually based on computer vision and/or ‘simultaneous
localization and mapping’ [SLAM]) is a broad and interesting area of research, but not directly
applicable to this dissertation. For examples, see any of Xin Zhou et al. (2022), Lu et al.’s
(2018), Smolyanskiy et al.’s (2017), or Hadi et al.’s (2014) work.

2https://px4.io
3https://ardupilot.org
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2.1.2 Photovoltaics

Photovoltaics/solar cells have become efficient and cheap enough to be deployed
on research drones. Oettershagen et al.’s (2015) 5.65m-wide experimental airplane
for example was capable of a continuous 12h 22m flight, powered by 88 solar
modules mounted on its wings. More recently, Dwivedi et al. (2018) achieved an
even longer 18 hour flight time, with a slightly smaller 5.35m wingspan, clearly
demonstrating the ever-increasing efficiency of PV cells.

Deployments like these are also possible on a much smaller scale, like Chu et al.’s
(2021) 2m-wide retrofitted commercial airplane. In this case, just 12 solar cells
were already enough to achieve a 22% efficiency gain. The tests for this example
were also not conducted under the excellent conditions needed to achieve the
results of Oettershagen et al. or Dwivedi et al.

If used as a platform for other missions, photovoltaics would also just be a nice-
to-have, as opposed to the main focus. For Lakehopper’s applicable use cases and
for the foreseeable future, results like those of Chu et al. will likely remain the
status quo. That is: long duration, but never indefinite flight.

2.1.3 Aquatic UAVs

Lakehopper’s entire premise – loitering on water to recharge – of course banks on
the assumption that a drone can be made to land on, and take off from, water.
This is fortunately the case, and incidently the subject of much research.

Water-landing/take-off capable drones can be divided into four categories: multi-
copters with floats, fixed-wing planes with floats (i.e., seaplanes), vertical take-off
and landing planes (VTOLs), and active/dynamic vertical take-off planes.

Multicopters with floats are the subject of the vast majority of research on
rotary-wing UAVs. As discussed, these drones use vertical thrust to stay in the
air, and those that are aquatic usually use bottom-mounted floats for landings.
Examples of these are the quadcopter described by Agarwal and M. K. Singh (2019)
or the hexcopter by Koparan, Koc, Privette, et al. (2020). Both of these examples
were used – among other purposes – to conduct water quality measurements. This
use-case will be discussed further in section 2.5: Applications.

VTOLs, or ‘vertical take-off and landing’ aircraft, are a second category of aquatic
multicopters. These are in a sense both rotary-wing and fixed-wing. An example
of a VTOL aircraft possessing both rotors and fixed wings is that of Bustamante
et al. (2019), which uses ducted-fans embedded in the plane’s wings. Alternatively,
a transforming design can be used, like in M. Hsu’s (2020) thesis. This thesis
used a quadcopter structure capable of rotating from a horizontal to a vertical
orientation, rotating with it the direction of thrust from pointing upwards to
pointing forwards.

Active vertical take-off planes use vertical thrust from a single propeller to
lift themselves (or ‘shoot’) out of the water. Once in the air, they transition to
a normal flight mode and use the same propeller to provide horizontal thrust.
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This is most commonly achieved using a rotating propeller, like in Tetreault,
Rancourt, and Lussier Desbiens (2020) or Waldau (2019). Alternatively, the plane
can use a fixed propeller but start its take-off from under the water to achieve the
necessary angle with the surface on exit, as shown by Rockenbauer et al. (2021).
Interestingly, Tetreault, Rancourt, and Lussier Desbiens’s design also includes
solar panels on the plane’s wings, with the same goal as previously described:
recharging between flights. Similarly, Waldau’s design would loiter as for example
a communications relay.

Seaplane UAVs are the fixed-wing equivalent of multicopters with floats, using
floats under their wings to land and take off. They are the scaled down version
of how most full-sized airplanes achieve aquatic capabilities. This concept is
demonstrated by Lou et al.’s (2019) preliminary design.

2.1.4 Summary of UAV Design

The Lakehopper prototype can be designed to have enough solar cells to recharge
its batteries when landed and to fly for longer than would be possible with just a
battery. Take-off and landing from water would also be possible, maybe through
an active vertical take-off mechanism or acting as a VTOL.

9



2.2 Semantic Segmentation of Aerial Imagery

Semantic segmentation is the process of dividing an image into different parts
based on the features present (see figure 2.2 below for an example). In aerial
imagery these features (also ‘classes’) can be buildings, roads, agricultural fields,
or of particular interest for this system: bodies of surface water (M. Wu et al. 2019;
Wurm et al. 2019). If a particular pixel belongs to a road for example, a semantic
segmentation algorithm might pick up on the uniform texture of the surrounding
area and the dark colour when compared to the rest of the image. For each pixel
and class, the algorithm then outputs a confidence level indicating how likely it is
that said pixels belongs to that class. Training a semantic segmentation model
requires examples of pixel-class pairings (labels) and is thus a type of supervised
machine learning (Y. Guo et al. 2018).

Figure 2.2: Semantic segmentation of aerial imagery
Left: aerial imagery Right: semantically segmented mask

The most common semantic segmentation algorithms either follow a traditional
machine learning approach or are an encoder-decoder convolutional neural network
(CNN). As shown in reviews by W. Liu et al. (2017), and Aloysius and Geetha
(2017), models in the CNN category have seen a particular focus in recent years.
Though, there is no single ‘best’ approach for all use cases4.

Nonetheless, some broad distinctions can be made to guide one’s choice. For
example, in general, traditional machine learning approaches require feature
engineering. This extra step involves extracting properties like edges, contrast
changes, pixel entropy, etc. from the image before passing it to the model (as
done for the random forest model of Kang and Nguyen (2019) and the models of
Bhatnagar, Gill, and Ghosh (2020)).

CNNs on the other hand nearly always operate directly on the input image. This
difference means CNNs are favourable in cases where the input dataset is too varied
and unstructured for feature engineering to be effective (Mahony et al. 2020).
The strength of being able to work with large datasets is however a double-edged

4This is also known as the ‘no free lunch’ theorem (Wolpert and Macready 1997).
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sword, as it is not always possible to gather the required amount of samples. So,
for small datasets, a traditional approach might perform better.

In the case of the vision component of Lakehopper, a general and adaptable
algorithm is required. This is because it might need to be expanded with new
feature classes (e.g., power lines or roads) or because it should work in new
environments (e.g., snowy or arid). Additionally, aerial imagery datasets are
widely available, so creating a large enough dataset should not be a problem.

So while a traditional machine learning approach might be preferable for a system
with a limited scope and expansion possibilities, for Lakehopper, a semantic
segmentation CNN is likely the best option. Ideally both approaches would be
evaluated and compared, but in the interest of limiting the scope of this dissertation,
only a handful of CNN variants will be considered.

2.2.1 Convolutional Neural Networks

The defining feature of convolutional neural networks is that they are made up of
‘convolutional’ layers. A convolutional layer uses sliding windows (also ‘kernels’) to
“recognize features regardless of their position in the image” (Albawi, Mohammed,
and Al-Zawi 2017, p. 1). Such a window might, for example recognize a downward
gradient or a horizontal line. The output of a single convolutional layer is a matrix
indicating the likelihood that the feature, the kernel is tuned to look for is present
in a particular part of the image.

A complete CNN combines many of these layers (along with other operations) one
after the other. Training this network is an automatic process – including a step
called ‘backpropagation’ – that, for each image in the dataset, tunes the kernels so
that the network output best matches the true label. (XueFei Zhou 2018).

2.2.2 CNN Encoders

One often-used configuration for a CNN is as a so called ‘encoder’, made up of a
series of convolutional layers combined with layers that reduce the resolution of
the image. This reduction (i.e., ‘downsampling’) is usually achieved using max
pooling, which only keeps the most important feature in a certain window.

The output of an encoder is a dense representation of the input. While low in
resolution (sometimes just 4 pixels wide and high), this representation describes
many features (represented as channels/dimensions). These features are not
designer-architected, but they do typically indicate some recognizable trait, like
how ’wavy’ the area is or how vegetation or water-like the colours are.

The dense representation can be used as the input to a classifier, which outputs
a probability array indicating the likelihood that a particular class is present
anywhere in the image. The first item in this array might, for example, indicate
that there is a 88% chance of a building being in the image.

In the case of CNNs for semantic segmentation, the dense representation is used

11



as the input for a second stage: the decoder (Ji et al. 2021). This stage expands
the dense representation back to the resolution of the input image, forming a
sort of reverse funnel which mirrors the encoder stage (see later figure 2.3). The
result is a collection of probability matrices indicating the likelihood that a certain
pixel belongs to its matrix’ corresponding class. Colouring each pixel according
to which matrix has the highest probability results in a mask like that of figure
2.2-right (page 10).

The exact arrangement of layers in the encoder varies for every CNN. Some of the
most used architectures are VGG (Simonyan and Zisserman 2015), ResNet (K. He
et al. 2015), InceptionNet/InceptionResNet (Szegedy et al. 2016), MobileNet
(Howard et al. 2017), and EfficientNet (Tan and Le 2020).

Bhatnagar, Gill, and Ghosh (2020) compare the performance of the first two of
these for semantic segmentation of drone imagery of a bog in Ireland. They find
that overall, ResNet50 performs better for their dataset, but note that VGG16
can more effectively handle noise in the images.

In another example, Girisha et al. (2019) use a VGG16 architecture on imagery
of suburban roads and surrounding vegetation in India. They later expand on this
work with a ResNet50-based model on an extended version of the dataset, finding
that the variants tested achieved a similar performance (Girisha et al. 2021).

Three of the most recent encoders: MobileNet, InceptionResNetV2, and Efficient-
Net, were evaluated by Parmar et al. (2020) on the DroneDeploy dataset (this
dataset will later be considered in section 2.2.5: Datasets). Of these three encoders,
the latter two outperformed MobileNet.

Besides segmentation performance, encoders should also be evaluated by their
complexity and computational cost, as done by Bahl et al. (2019) for power
consumption.

Overall, a case-by-case analysis is required to decide on the best architecture for
a particular system. For the semantic segmentation CNN of Lakehopper, this
analysis will include ResNet50, InceptionResNetV2, and EfficientNet. All three of
these show promise based on the above results.

2.2.3 Semantic Segmentation Decoders

As mentioned, CNNs for semantic segmentation have not only an encoder, but
also a decoder stage. The design of this stage, as well as the connection between
the two stages varies significantly between models. Some of the most used
architectures in this regard include UNet (Ronneberger, Fischer, and Brox 2015),
Fully Convolutional Networks (FCNs; Shelhamer, Long, and Darrell 2016), SegNets
(Badrinarayanan, Kendall, and Cipolla 2016) Feature Pyramid Networks (FPNs;
Lin et al. 2017), Pyramid Scene Parsing Networks (PSPNets; Zhao et al. 2017),
and LinkNets (Chaurasia and Culurciello 2017).

All of the above architectures use some form of ‘skipping’ between layers of the
encoder and decoder. The goal of skips is to include not only the coarse features of

12



Figure 2.3: Semantic segmentation decoder architectures
(a): FPN (b): UNet (c): FCN Grey/green/blue layers:
downsample/intermediate/upsample layers

the dense representation but also the finer edges of segmented objects. The final
layer of the encoder might for example point to a water feature being present in
the center of the image, while the second to last (higher resolution) layer indicates
the oval shape of that feature. These two data points are then combined in the
decoder to form an oval lake. Exactly how this is achieved varies between the
models. LinkNets for example arithmetically add the skipped layer to the previous
layer in the decoder, while UNets and FCNs instead concatenate the layers and
subsequently extract the most important features.

A second common aspect of decoders beside skips is the presence of upsampling
layer(s) to bring the final dense layer of the encoder up to the same resolution
as the input image. In UNets and LinkNets this is done in steps. FCNs on the
other hand use a single layer to handle this task, while PSPNets and FPNs use an
intermediate pyramid-shaped representation feeding into a single final layer.

Figure 2.3 above illustrates the layout of skips and upsampling layers visually for
the FPN, UNet, and FCN architectures.

The previously discussed analyses by Bhatnagar, Gill, and Ghosh (2020, bog
Ireland) and Girisha et al. (2019, road/vegitation India) also compared UNet to
respectively SegNet and FCN. For their particular use cases, they found that an
FCN outperformed UNet, followed by SegNet.

UNet was also compared to the three most recent architectures mentioned (FPNs,
PSPNets, and LinkNets) by Parmar et al. (2020, DroneDeploy dataset). This
study found FPN outperforms the three other architectures, but was closely
followed by UNet.

Based on these results, UNet, FCN and FPN will be considered in later sec-
tions.
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2.2.4 Transfer Learning

As discussed before, CNNs often require large training datasets to reach an
acceptable level of performance. One way to reduce this need is to use transfer
learning. In transfer learning, another – often unrelated – dataset is used to
initially train the model. This primes the model to recognize general shapes
and features. It can then be trained a second time with the actual dataset for
fine-tuning. The initial dataset can be a much more general one, like Imagenet5,
which contains classes completely unrelated to drone semantic segmentation (e.g.,
‘leopard’ or ‘artichoke’).

The concept of transfer learning is illustrated by Wurm et al. (2019) for the
detection of slums. In this study, the CNN is initially trained with a detailed
low-altitude dataset and afterwards fine-tuned to work with larger-scale imagery.
Similarly, Girisha et al.’s (2021) segmentation model was first trained on the
Cityscapes6 dataset and subsequently retraining on self-collected drone imagery.
Lakehopper’s CNN will also use transfer learning, as will be discussed in section
3.2.2: of the next chapter: 3: Design & Implementation.

2.2.5 Datasets

Labelling the images required to train a CNN can be a tedious task. However,
using an existing labelled dataset can – partially – alleviate this.

A first requirement of such a dataset is that it should contain enough examples of
the classes that we want to identify. If not, predictions from the model might get
skewed towards other classes (known as class imbalance). Therefore, datasets like
the one used by Bhatnagar, Gill, and Ghosh (2020) or Robicquet et al. (2016)
cannot be used, as they contain no water.

Additionally, the dataset must contain colour images, as captured by the camera
that will be used on the Lakehopper drone. This is as opposed to, for example,
infrared pictures, or the polarimetric synthetic-aperture radar (PolSAR) images
used in W. Wu et al. (2019).

Finally, the images must be captured from the same perspective as that of
Lakehopper’s camera (top-down), making the oblique images of Lyu et al. (2020)
for example inapplicable.

Given all these requirements, the DroneDeploy segmentation dataset as well as
the dataset used by Girisha et al. (2021) can be used to train the CNN, and will
later be discussed in detail in section 3.2.1: Preprocessing.

5https://www.image-net.org/
6https://www.cityscapes-dataset.com/
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2.3 Landing Site Selection

To select an appropriate landing site from its surroundings, the planner naturally
needs a map of all of them (or at least of those close-by). This map can be generated
dynamically (i.e., in-flight), by using semantic segmentation for example, as done
by X. Guo et al. (2014, aerial imagery) and Marcu et al. (2018, in simulation).
Alternatively, it can be created beforehand, as shown by Ayhan et al. (2019) for
satellite imagery. This last example closely resembles Lakehopper’s approach.

Given a map of sites, the next step to selecting the best one is to filter out any
candidates that are too small to land. What ‘too small’ means of course depends
on the drone in question. A seaplane-style UAV would need a runway-shaped
rectangle to land, while a multicopter only needs a spot as large as itself (and
some margin). For the purposes of this dissertation, Lakehopper will be assumed
to be either a multicopter, VTOL, or dynamic takeoff plane, all of which require
simply a circular landing site.

For each body of water, the question then boils down to a circle-in-polygon problem:
does the minimum landing area (the circle) fit into the landing site (the polygon).
A simple solution that comes to mind is to find the furthest removed point from
all sides of the polygon, known as the ‘pole of inaccessibility’. If that point is
further removed from the nearest side than the circle’s radius, the circle fits. The
pole of inaccessibility can be found using for example the Polylabel algorithm,
developed by MapBox 7, a web cartography company (Agafonkin 2016).

A problem with this approach is that it would reduce large lakes down to a single
landable point. Instead, we ideally want a map of polygons where landing is
possible, with the necessary landing circle already accounted for. Creating these
polygons is simply a matter of shrinking each body of water by the radius of
the landing circle (i.e., negatively buffering it). This simple approach will be the
method of choice for Lakehopper, as will be discussed in section 3.1. Along with
the point of inaccessibility approach, it is also illustrated in figure 2.4 below.

Figure 2.4: Two approaches to the circle-in-polygon problem
Left: pole of inaccessibility Right: negative buffer

Once a list of landable polygons has been drawn up, which of these counts as
the best one depends on the flight path the planner wants to take. This will be
discussed in the next section.

7MapBox: mapbox.com
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2.4 Path Planning

To be used as a platform for long duration and possibly remote missions, Lake-
hopper must be able to fly completely autonomously between points of interest.
As discussed before, the planned path should avoid obstacles like buildings and
restricted airspace. Additionally, the planner must be able to decide if an interme-
diate stop is necessary to recharge the battery.

A complete model of this problem would require navigation in 3-dimensional
space, to avoid power lines for example, mountains, and elevation-based airspace
restrictions. However, a simpler model in two dimensions (‘in the plane’) can be
used in an initial analysis. In this model, height-dependent obstacles have to be
reduced to simple regions based on whether they apply to the UAV’s cruising
altitude.

Given this representation of the environment, one method of finding the shortest
path is through a two-phase algorithm. An initial ‘learning’ phase constructs a
graph representing all possible paths through the environment, after which a second
‘query’ phase finds the shortest path over this graph (Yang et al. 2014).

The graph can be constructed using randomly placed points, with an edge between
every two points that does not intersect any obstacles. This method, known
as ‘probabilistic roadmap’ (PRM), has been studied extensively, for example by
Bohlin and Kavraki (2000), Belghith et al. (2006), and Francis et al. (2020).
A problem with this approach is that it has trouble navigating through narrow
passages, due to the random placement of points, although this can be mitigated
by placing points near obstacles (Boor, Overmars, and van der Stappen 1999;
Amato et al. 1998) or by dynamically increasing the number of points near these
passages (D. Hsu, Jiang, et al. 2003; D. Hsu, Sanchez-Ante, and Sun 2005).

An alternative to PRMs is to simply use the obstacle points as the vertices for
the graph, while similarly keeping only edges that are visible to each other. The
resulting graph is known as a ‘visibility graph’, and is demonstrated by Emo Welzl

Figure 2.5: Visibility graph among three obstacles, and a shortest
path over it
Orange & purple: obstacles Grey lines: visibility graph edges
Blue line: shortest path between green points
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(1985), Alt and E. Welzl (1988), and de Berg et al. (2008). Figure 2.5 on the
previous page illustrates such a graph and a shortest path over it. Both in the case
of PRMs as for visibility graphs, points can be added or removed later, to add a
start and end point, or to model dynamic obstacles (Ghambari et al. 2020).

Once the graph is constructed, the query phase can be implemented using Dijkstra’s
well-known shortest path algorithm (Dijkstra 1959). However, since nodes in the
navigation graph correspond to geographical points, the geographical distance
to the goal node can be used as a heuristic to guide the search. This modified
version of the shortest path algorithm is known as A*, conceived at the Stanford
Research Institute for the Shakey autonomous robot (Hart, Nilsson, and Raphael
1968).

In case the obstacles are not polygonal or too detailed, a grid-based approach is
possible (voxel-based in three dimensions, see Yan, Y.-S. Liu, and Xiao 2013). This
is demonstrated by Radmanesh et al. (2018) for the potential field, Floyd-Warshall
and, Multi-Step Look-Ahead Policy algorithms, as well as by Bo Li et al. (2020)
for ant-colony optimization (ACO).

For the purposes of Lakehopper, all obstacles are polygonal, so it is possible to use
the visibility graph algorithm combined with A* as discussed before. This method
always produces the optimal path, but can be slow for larger areas. Optimizations
can later be applied if this proves to be a problem. Section 3.1 of the next chapter,
Design & Implementation, will detail the development of both the visibility graph
generator and the shortest path algorithm.
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2.5 Applications

As discussed in the Background section (section 1.1), there are endless areas of
research that could benefit from Lakehopper as a platform. To discuss them all
would not be possible. Instead, this section will show a single case study; water
sampling, which is a particularly common application of aquatic drones. The
case study will illustrate how existing missions can be adapted to work in the
constraints of Lakehopper.

2.5.1 Introduction

Projects that employ UAVs for water sampling can be subdivided into two cat-
egories: those that collect samples for later analysis and those that measure
properties of the water in-situ (i.e., during the mission).

Sample collection for later analysis is usually achieved using either a long tube
and pump, or with a mechanism to submerge & fill a vial. Some other missions
instead perform in-situ measurements, possibly without taking samples.

2.5.2 Long Tube Sampling Mechanism

A first example of the long tube method is the UAV system developed by Banerjee
et al. (2020), which uses six pumps and respective tubes. This system could
benefit from Lakehopper as a platform in two ways. First, it could enable sampling
in remote regions where the drone cannot be released close to the target body of
water. Second, it could enable sampling for longer periods of time.

For the second use case however, the system of Banerjee et al. might need the
possibility to collect more than its current capacity of six samples. If not, multi-day
sampling as enabled by Lakehopper might not be useful.

A similar example is the UAV system of Ore et al. (2015), which also uses a long
tube and supports collecting multiple samples. However, it uses a single pump
combined with a rotating mechanism that ‘chooses’ a vial to deposit the sample
into. This method is likely easier to adapt to multi-day missions, as more vials
can just be added without much added complexity.

2.5.3 Submerge & Fill Sample Mechanism

The second common collection technique; using vials that are submerged and
filled, is demonstrated by Doi et al. (2017) as well as Koparan, Koc, Privette,
et al. (2018) (also Koparan, Koc, Privette, et al. 2019). The former two examples
both use a single cartridge suspended by a cable. The last example uses a more
complicated mechanism, involving a servo motor that opens or closes one of three
cartridges suspended as a single package.

In an alternative configuration, the cartridge can be mounted on the bottom of
the UAV, like demonstrated by Koparan, Koc, Privette, et al. (2020).
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Like the long tube method, long-distance missions of these systems could benefit
from Lakehopper as a platform, but multi-day missions would require modifications
to collect additional samples.

2.5.4 In-situ Measurements

To collect in-situ measurements, sensors on the drone itself are used. This technique
has the benefit that, in contrast to the previous examples, multi-day missions are
possible without major modifications.

The water sampling UAV of Koparan and Koc (2016) for example uses such sensors
on the drone to measure dissolved oxygen content (DO), temperature, electrical
conductivity (EC), and chloride levels of the water. Koparan, Koc, Privette, et al.’s
(2020) implementation of this technique also measures pH level and turbidity
(beside the bottom-mounted sample collection discussed before).

2.5.5 Summary of Applications

This case study has demonstrated that Lakehopper could be used as a research
platform for existing mission types. Although, it also shows that modifications
and expansions might be necessary in some cases.
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2.6 Summary of Literature Review

This thorough review of the existing literature has provided the foundation needed
to develop the high-level planning software for Lakehopper. Additionally, it has
proven the viability of Lakehopper, both with respect to its development and as a
research platform.
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Chapter 3

Design & Implementation

This chapter discusses the techniques and methods used to create the planner
and vision components for Lakehopper. The performance of these components,
as well as learnings from their creation, will be discussed in chapter 4: Results.
Possible extensions, as well as the steps required to integrate them into a complete
system, will be discussed in section 5.2: Future work of chapter 5: Discussion &
Conclusion.
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A Note on Source Code

All source code for both components is available as an online Git repository via
github.com/ubipo/lakehopper. For an overview of the structure of this repository,
see appendix B: Source Code Overview. References to specific files or directories
are written as “path/to/file.xy”, starting from the root of the repository.

3.1 Planner

The planner component (planner/) of the Lakehopper system is responsible for
generating the optimal flight path between points, while avoiding obstacles and
optionally stopping to recharge.

Because the program that makes these calculations will be used continuously in
flight, performance is paramount. Not only to optimize the energy consumption of
the computer on the drone, but also to ensure that a safe path is always available
in time. The program must also be reliable, with as little unhandled failure
conditions as possible. After all, the drone might be difficult to retrieve if it gets
stuck in a remote area.

The Rust programming language was specifically designed with such requirements
in mind. It is a compiled language without a garbage collector, which pays
dividends in its runtime performance. Additionally, it is completely memory-safe
and has tooling which forces every possible error to be handled (or explicitly
ignored) (Perkel 2020; Balasubramanian et al. 2017).

While the performance and reliability requirements could just as well be met
using practically any other language, Rust makes focusing on these goals easy.
A notable trade-off of using Rust is slightly more resistance while writing code,
while programming in more dynamic languages often feels smoother (Ardito et al.
2021). Forcing all cases and possible errors to be considered – something dynamic
languages do not usually require – can indeed be tedious.

This program will serve as the brains of the Planner, and will be executed on the
drone itself: close to where its decisions are needed. In web development terms,
this part of the system would be called the backend. Its source is located under
planner/src/.

Apart from the backend, the planner also needs a user interface (UI); to visualize the
current state of, and to control, the system. This frontend will run on the ground
station computer, so, a webbrowser-based UI was developed to support all modern
devices. As the code of the frontend does not have the same stringent performance
and reliability requirements as the backend, it was written in Typescript, a
more dynamic language than Rust. Typescript also integrates well with modern
browsers, as it builds on JavaScript, the de facto programming language for the
web. The source code of the UI is stored under planner/ui/ and figure 3.1 below
shows it in use.
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Figure 3.1: Frontend browser UI for the planner

When actually deployed on Lakehopper, there will need to be a continuous
communication channel between the UI on the ground station and the backend on
the UAV (e.g., for location or battery level updates). For this reason a websocket
connection is used, which provides a two-way channel than can easily be adapted
to work over a standard drone telemetry connection1 (Fiers 2021).

The eventual deployment of the navigation system will use data from the imagery
segmentation component. For testing during the development phase, however, a
temporary dataset was created. This dataset is comprised of building geometries
from the Flemish geographical information agency (AGIV 2), combined with surface
water body geometries from OpenStreetMap3. A safety buffer was added around
the buildings, and a negative buffer to the water bodies (as discussed in section
2.3: Landing Site Selection of the literature review). Figure 3.1 above shows this
dataset loaded in the browser UI via the websocket connection to the navigation
backend (red indicating the building buffer, blue the bodies of water).

1For example, the SiK telemetry radio by HolyBro:
http://www.holybro.com/product/transceiver-telemetry-radio-v3/

2Agentschap voor Geografische Informatie Vlaanderen:
geopunt.be/over-geopunt/extra/glossary/a/agentschap-voor-geografische-informatie-
vlaanderen

3osm.org/about
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3.1.1 Airspace Restrictions

In addition to buildings and bodies of water, the planner’s aggregated map also
contains airspace restrictions. As an initial proof of concept, this functionality was
implemented for Belgium’s UAS geographical zones. UAS (unmanned aerial sys-
tems) geographical zones are a standardized representation of airspace restrictions
for UAVs in the European Union4, as well as – partially – the United Kingdom.
Because of this standardization, it would be possible to extend the implementation
to other European countries.

The publisher of UAS geographical zones in most of Belgium is Skeyes5, the Belgian
air navigation and traffic service provider. Skeyes publishes their geozones – among
other channels – through an ArcGIS REST service6. To load the geozones, a simple
client was developed for this service (planner/src/droneguide.rs). This client
connects to the relevant endpoints via HTTP and retrieves both the polygons of
the geozones, and their restrictions. The restrictions are quite complex, depending
on the type of drone, height above sea level, time of day, temporary notices etc..
Therefore, for the purposes of this initial implementation, just the permanent
restrictions relevant to Lakehopper’s cruising altitude were considered.

Figure 3.2: Restricted airspace data in the planner
Red: buildings Blue: water Purple: restricted airspace

An example of the geozone data in the planner UI is shown in figure 3.2 above.
Figure 3.1 of the browser UI on page 23 shows the button by which the data can
be loaded (labelled “Load restricted airspace”).

4As defined by article 15 of the Commission Implementing Regulation (EU) 2019/947 of 24
May 2019 on the rules and procedures for the operation of unmanned aircraft (The European
Commission 2022).

5Skeyes: skeyes.be, the geozone manager, as appointed by the Belgian Civil Aviation Authority
(BCAA): mobilit.belgium.be/nl/luchtvaart.

6Available at services3.arcgis.com/om3vWi08kAyoBbj3. See developers.arcgis.com/rest for
more information on ArcGIS REST services.
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3.1.2 Visibility Graph

As decided in the literature review section on path planning (section 2.4), a
visibility graph approach is used to calculate shortest paths. Examples of a part
of this graph are shown in figure 3.3 below. As the calculated graph is extremely
dense, this figure only shows the edges for a single node.

Figure 3.3: Two example nodes of the visibility graph, as well as
their edges
Node: orange Graph edges/visibility lines: light blue Possibly
visible points: dark blue

A naive approach to calculate this graph would be to check the visibility of every
possible combinations of points. Checking whether a point is visible from another
point requires checking for an intersection with all line segment on the obstacles,
the time complexity of which is O(n) (where n is the number of obstacle points).
Performing this check for every possibly visible point gives a complexity of O(n2),
which becomes O(n3) when applied to every node in the graph.

A better approach, described in de Berg et al.’s Computational Geometry: Algo-
rithms and Applications (2008, pp. 326-330), is to use a rotational sweep while
checking visibilities. This limits the number of line segments that need to be
checked for an intersection to just those intersected by the sweep ray (illustrated
in figure 3.4), lowering the intersection checking step’s time complexity from O(n)
to constant time.

In order to perform this sweep, all points must first be ordered according to their
angle with the current point. This step takes at worst O(n log(n)) time, and
needs to be done for every node in the graph. Overall, the time complexity of this
improved visibility graph algorithm is therefore O(n2 log(n)).

Further improvements can be made to limit the number of points that need to be
considered for visibility. First, only points that are ‘in front’ of the current node
can possibly be visible. A visibility line to any point ‘behind’ the current node
would intersect the obstacle that the current node is a part of. This is visible in
the right example of figure 3.3. Notice how the points behind the orange node are
not marked with a dot, indicating that they cannot possibly be visible.
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Figure 3.4: Sweeping ray of the visibility graph algorithm
Node: light blue Ray: green Possibly visibility-blocking line
segments: dark blue

Additionally, points that are part of the inner ring of an obstacle can also never
be visible if the current node is part of the outer ring (and vice-versa for the outer
ring when the current node is part of an inner ring).

Three versions of the visibility graph algorithm were implemented. These are:
the naive approach, the sweep algorithm from de Berg et al. (2008), and the
sweep algorithm with optimizations. As shown in figure 3.1 of the browser
UI (page 23), it is possible to switch between these implementations on the
fly. As the implementation is quite complex, it is split into several files under
planner/src/nav_graph/.

The performance of all three algorithms will be compared in section 4.1 of the
next chapter: Results.

3.1.3 Shortest Path

As discussed in the literature review, shortest path queries can be answered using
the A* algorithm (Hart, Nilsson, and Raphael 1968) over the generated visibility
graph.

The cost of edges in the graph is their geographical length. The heuristic that
guides A*’s search is the geographical distance between the node in question and
the goal node. Because the optimal path disregarding obstacles would just be
the line between the start and the goal node, the heuristic will always predict a
shorter (or equal) distance to the goal as compared to the optimal path’s length.
This property is called ‘admissibility’ and guarantees that the returned path will
always be the optimal one.

The implementation of A* in the planner is adapted from the original paper by
Hart, Nilsson, and Raphael (1968), as well as the petgraph7 Rust library. It is
illustrated in figure 3.5 on the next page for two different queries. Its source code
is available as planner/src/nav_graph/bounded_astar/mod.rs.

7Petgraph library: https://docs.rs/petgraph/latest/petgraph/
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Figure 3.5: Shortest paths between two points
Shortest path: purple

3.1.4 Landing to Recharge

As mentioned before, the planner should not just be able to calculate the shortest
path between two points, but it should also be able to generate a path with stops
to recharge.

If and when a recharge stop is necessary depends on many factors, including the
remaining battery charge, power consumption, and even wind speed. For the
purposes of the planner though, these factors can be approximately represented
by a ‘remaining distance’ metric. Similarly, the potential range after charging can
be represented by a ‘remaining distance after charge’ metric (both visible as slider
parameters in figure 3.1).

Given these two values, the navigation planner should produce a series of paths
(or ‘hops’) from the start point, to recharge points, and eventually to the end
point. This problem can be decomposed into a series of smaller problems: given a
start and endpoint, produce a path that either reaches the end point or stops at
the last reachable recharge point. By repeatedly solving this smaller problem with
a start point ever closer towards the end, a complete path with multiple hops can
be generated.

For a given iteration of this smaller problem, there can be multiple ‘last reachable’
recharge points. There might be, for example, two lakes where the UAV can
land: one to the left and one to the right. Whether the planner decides to land
on the left or on the right lake depends on which of the resulting total paths
would give the shortest flight time (including recharge time). Therefore, finding
an optimal solution to the total route problem would require considering all
possible total routes. This total grows for each possible hop, akin to the travelling
salesman problem, with a worst-case naive time complexity of O(n!) where n is
the number of recharge points, plus the start and end point. Although, just like
the travelling salesman problem, this can be reduced to exponential time using
dynamic programming (Y. Li 2014). An even simpler solution, however, is to use
a heuristic to decide between the possible next recharge points, without exploring
all of them.
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A simple example of such a heuristic is to try to stick to the shortest path without
recharge hops (the ‘ideal’ path). In other words, if the ideal path verges to the
left, the left recharge point should be selected. To encourage progressing towards
the goal, recharge points that are further along the ideal path should also be
prioritized. These two goals can be achieved by ordering on a single metric: the
distance to the last reachable point along the ideal path. This both encourages
sticking to that path, and progressing towards the goal at the same time. Figure
3.6 below illustrates a three-hop route planned using this heuristic. The last
reachable points along the ideal path are also shown. Figure 3.7 on the next page
gives two more route examples, with respectively four and five hops. The planner
algorithm is implemented in planner/src/nav_graph/planning.rs.

Figure 3.6: Planned route with two recharge stops
S: start node E: end node L1/L2: last reachable point along
ideal path of first and second leg respectively α: ideal path of first
leg β: three-legged path with recharge stops
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Figure 3.7: Two planned routes with multiple recharge stops
Green/red pin: start/end node Purple: planned path Orange
points: recharge stops

3.1.5 Summary of Planner

Thanks to the browser-based user interface discussed in this section, the operator of
Lakehopper is able to view obstacles and water detected by the vision component.
The operator can also use the interface to instruct the backend to calculate the
shortest path between points, potentially stopping to recharge on water along the
way. This functionality is backed by both an efficient visibility graph algorithm
and a multi-hop route planner.
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3.2 Vision

The vision component consists of three parts. The first of these are the prepro-
cessing scripts. These scripts have two functions: transforming the raw datasets
into a format usable for training, and helping in the labelling process. The second
part of the vision component is the training notebook, responsible for actually
training the neural networks using the processed data. The third and smallest
part is the map generation script. This script uses the best performing model to
generate maps from aerial imagery for the planner to use.

3.2.1 Preprocessing

As discussed in the literature review section on UAV semantic segmentation
datasets (2.2.5), the existing DroneDeploy Segmentation dataset8 as well as the
dataset used by Girisha et al. (2021) could be used to train the segmentation
model for Lakehopper. Of these, however, only the former could actually be
downloaded9.

The DroneDeploy Segmentation dataset consists of 55 georeferenced drone images,
as well as corresponding coloured label masks. An example snippet of these is
shown in figure 3.8 below.

Figure 3.8: Sample of the DroneDeploy Segmentation dataset
Left: image shot from drone Right: colour label mask

Because the images are very large, both in resolution (4,873 by 4,873 pixels)
and geographically (2km2 and up), they need to be divided into smaller ‘chips’.
These chips have a resolution that is on par with what a small camera on board
of the drone would produce (300 by 300 specifically), as well as a field of view
that better reflects the target cruising altitude (capturing a few houses or just
part of a lake). This process is handled by a small Python script: vision/src/
lakehopper_semseg/preprocess/chipify.py.

8Available at: https://github.com/dronedeploy/dd-ml-segmentation-benchmark
9The authors of Girisha et al. (2021) did not respond to a request for data access.
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This script also filters out chips that contain sections that should be ignored (e.g.,
image artefacts or private data). Additionally, it converts the coloured label mask
to a binary format better suited to training. Finally, it maps some superfluous
classes to ones relevant to Lakehopper. ‘Vegetation’ for example is mapped to
‘background’, as for now, Lakehopper does not need to segment vegetation in input
images – only water and buildings.

In total, the script extracts 10,325 such chips, nearly all of which show at least
some ground. However, only 14% (1,466) contain any buildings, while an even
smaller 10% (1,051) contain water. This imbalance in the presence of classes is
discussed in the next section.

The DroneDeploy dataset contains enough examples to train a performant model.
Nonetheless, it lacks some features common to Western Europe that Lakehopper
is likely to encounter, like fields, forests, and canals.

Therefore, in addition to the DroneDeploy dataset, a completely new dataset was
created focussing specifically on these features. By combining the two datasets,
the aggregated training images are much more diverse. The next section will also
discuss ‘augmentations’ to increase diversity even further.

The new dataset consists of aerial images10 from the Flemish geographical in-
formation agency (AGIV), along with coloured label masks. These masks were
created by a Python script that converts AGIV water body and building outlines11

into masks, which were then edited manually to, for example, remove bridges
and overhanging vegetation (see figure 1.3 on page 4) or to add missing buildings.
Manual editing was done using both the free tier of a commercial web-based
labelling tool12 and the well-known Labelme program13.

The same chipify.py script created to divide the DroneDeploy dataset into chips was
also used on this new dataset, resulting in 2,112 chips, with 44% (931) containing
buildings and 18% (372) containing water. With that, the aggregated dataset
contains 12,437 chips (19%/2397 with buildings and 11%/1423 with water).

3.2.2 Training

As mentioned, the training was performed in a notebook, a Jupyter Notebooks in
particular (vision/src/lakehopper_semseg/train.ipynb). Jupyter Notebooks
are a data science tool that combines code with text and visual outputs. In
addition to this notebook, some small utility scripts are used (e.g., vision/src/
lakehopper_semseg/visualize.py).

10From the 25cm orthographic colour images dataset:
download.vlaanderen.be/Producten/Detail?id=1545

11Water bodies: download.vlaanderen.be/Producten/Detail?id=6566, Buildings: down-
load.vlaanderen.be/Producten/Detail?id=6566

12Hasty.ai: hasty.ai
13Labelme: github.com/wkentaro/labelme
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Class Imbalance

As evident by the ratio of chips containing water and buildings, the dataset
contains a serious class imbalance. Furthermore, individual chips that do contain
water often only do so in small areas.

To counteract the first source of imbalance, only chips that contain at least
buildings or water were used for training. This reduces the dataset to 3,583 chips,
with 67% (2,397) containing buildings and 40% (1,423) containing water.

Class imbalance within individual chips was addressed through a weight mask.
Pixels in this bytewise mask have a high value if they correspond to an under-
represented class (water) and a low value if they correspond to an over-represented
one (ground). During training, the loss function is weighed by this mask to place
more emphasis on sparse classes.

Augmentations

To increase the diversity of the dataset, random augmentations were applied to
every image. This way, if batches repeat themselves, they are never exactly the
same. Training on this larger dataset makes the model more robust to noise and
lighting variation.

The three augmentations used are: flips/mirroring (horizontal and vertical),
changes in hue, and changes in brightness. Three samples with random amounts
of each augmentation (as passed to the model) are shown in figure 3.9 below.

Figure 3.9: Random augmentations of a sample image
Leftmost: base image Others: sample augmentations

Models

As discussed in section 2.2.2: CNN Encoders, three CNN encoders hold particular
promise for Lakehopper’s vision system: ResNet50, InceptionResNetV2, and
EfficientNetB3. Each of these was integrated into the three semantic segmentation
decoders discussed in section 2.2.3 Semantic Segmentation Decoders: UNet, Fully
Convolutional Networks (FCNs), and Feature Pyramid Networks (FPNs). In total,
this results in 9 specific models. The performance of each combination of encoder
and decoder will be discussed in section 4.2: Vision of the next chapter.

Just like the auxiliary data processing scripts, the model definitions and training
code were written in Python. Python has a vast array of data science and
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scientific libraries (NumPy, Matplotib, SciPy, OpenCV14 etc.), and it is the most
well-supported language of the Tensorflow/Keras15 framework, which was used
to create the models. The vision/src/lakehopper_semseg/models directory
contains both the encoder and decoder definitions.

Training

Training of the models was accelerated using Tensorflow Processing Units (TPUs),
provided through Google’s TPU Research Cloud programme16 for students and
researchers. TPUs are application specific integrated circuits (ASICs) designed
for machine learning applications. They cut training time down from possibly
several days on a laptop, to under an hour, or to even mere minutes.

The encoder stage of every model was pretrained on ImageNet17. This transfer
learning also speeds up training significantly (see section 2.2.4: Transfer Learning
of the previous chapter).

Despite augmentations and an extended dataset, overfitting may still occur. To
address this, early stopping was also implemented. This mechanism stops training
if loss over the validation dataset does not improve for a certain number of
epochs.

Loss curves and training results will be discussed in the next chapter.

3.2.3 Map Generation

As discussed in the problem description (section 1.2 Problem Description), the
goal of the vision component is twofold: a) to generate maps from aerial imagery
for the planner component to use, and b) to, in a later version of Lakehopper, be
used in-flight.

The former goal, map generation, is handled by a small Python script that uses
the best trained model to predict/‘infer’ water and buildings from unseen aerial
imagery datasets (vision/src/lakehopper_semseg/map/chips_to_map.py). It
does this for every chip of some larger image. It then converts these outlines to
polygons and simplifies them. The resulting map is a drop-in replacement for the
test dataset used during development of the planner component.

Using this script, a map from practically any area in North America or Europe
can be generated using just aerial imagery.

3.2.4 Summary of Vision

To transform the datasets for the vision component, several preprocessing scripts
were created. These, for example, split the data into chips and convert it into

14Python scientific libraries: numpy.org, matplotlib.org, scipy.org, opencv.org
15Tensorflow/Keras: tensorflow.org / keras.io
16TPU Research Cloud: sites.research.google/trc
17ImageNet: image-net.org
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a format better suited to training. With this data, a Jupyter Notebook trained
nine models, each with a different encoder-decoder pair. Finally, a script was
created to, using the best model, generate a map of buildings and landable bodies
of surface water from aerial imagery.

3.3 Summary of Design & Implementation

Chapter 3 has given an overview of the design and implementation of the high-level
planning software for Lakehopper. This design followed decisions made in chapter
2 Literature Review and has fulfilled a solution for the problems described in the
introductory section 1.2 Problem Description.
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Chapter 4

Results

Following the implementation of the two system components in chapter 3: Design
& Implementation, this chapter will discuss the performance results for each
component. It will be the basis for the final conclusions and recommendations in
chapter 5: Discussion & Conclusion.
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4.1 Planner

The visibility graph algorithm was implemented in three variations: a naive version,
a version closely following de Berg et al.’s (2008) rotational sweep approach, and
a final version building upon this sweep approach with various optimizations. As
discussed in the literature review (section 2.4: Path Planning), this naive version
has a time complexity bounded by O(n3), while both sweep versions are bounded
by O(n2 log n). n in all cases refers to the number of vertices in the visibility
graph.

To test the performance of the algorithms in real-world conditions, each was
applied to seven regions of increasing area and centred on the same randomly
chosen point (50.995◦ N, 4.506◦ E). Table 4.1 below shows the number of nodes
in each region.

Area (km2) 500 1500 2000 2500 3000 3400 3500
Number of vertices 54 516 836 1303 1728 2206 2711

Table 4.1: Test areas for visibility graph algorithms

The processing time of every run was measured using the system’s high-resolution
monotonic clock. Figure 4.1 below shows the results of these tests. This graph also
shows the – constant-factor corrected – big O bound for each variation, demon-
strating that the algorithms more or less follow their expected time complexity
curve.

Figure 4.1: Running time of visibility graph algorithms

While the difference between the base and the optimized versions of the sweep
approach is initially small, the gap between them does grow quadratically (see
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bottom right). Unfortunately, even the running time of the optimized algorithm
already grows to over 20 seconds above 2500 nodes. More optimizations and a
divide-and-conquer approach might be able to tame this growth, but it is worth
considering other approaches to calculate shortest paths that do not rely on a
visibility graph. This will be further discussed in section 5.2: Future work of the
final chapter.

Manual tests of the multi-hop planner algorithm showed that a route could always
be found in under a second. As the algorithm uses backtracking in case it gets
stuck after a hop, it will always find a route when possible.

4.2 Vision

As discussed in the previous chapter, models of all nine encoder-decoder combi-
nations were trained on a 3,583-sample large dataset of both DroneDeploy and
AGIV aerial imagery.

All models were trained to a complete 40 epochs, after which validation loss did
not improve (see figure 4.2.a below). Figure 4.2.b shows that even after saturating
the training loss, overfitting did not occur (notice how the validation loss did not
deviate up at the end).

Figure 4.2: (a): Validation loss during training of four segmentation
models (b): Validation and training loss for the FPN + EfficientNetB3
model

To evaluate the performance of the models, five common metrics were calculated
over the entire test dataset: accuracy, precision, recall, F1 score, and the mean
intersection of union (MIoU) over all classes. While the IoU of the different classes
did vary somewhat (favouring the background class), this variation was consistent
across all models.

Table 4.2 on the following page shows these metrics for all encoder-decoder
combinations. The model based on a feature pyramid network (FPN) and the
EfficientNetB3 encoder performed the best on all metrics (shown in bold). Based
on results of previous research (see section 2.2.2: CNN Encoders of the literature
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review), it is not surprising that EfficientNetB3 performs better than ResNet or Mo-
bileNetV2. What is surprising, is the poor performance of the FCN-based network
with a MobileNetV2 encoder. The learning rate for MobileNetV2-based networks
stagnated much sooner than models with the other encoders. For UNet, FCN,
and FPN this was at epoch 20, 13, and 10 respectively. The FPN+EfficientNetB3
model on the other hand trained until epoch 39 before stagnating. The particular
implementation used might also hurt the performance of MobileNetV2 networks.
Section 5.2: Future work of the next chapter will discuss this further.

Decoder Encoder Acc. Precision Recall F1-score MIoU

MobileNetV2 0.92 0.92 0.91 0.91 0.72
UNet InceptionResNetV2 0.94 0.94 0.94 0.94 0.77

EfficientNetB3 0.96 0.96 0.95 0.96 0.81

MobileNetV2 0.69 0.47 0.15 0.22 0.49
FCN InceptionResNetV2 0.92 0.93 0.90 0.92 0.75

EfficientNetB3 0.95 0.96 0.93 0.94 0.81

MobileNetV2 0.91 0.92 0.91 0.91 0.71
FPN InceptionResNetV2 0.94 0.94 0.94 0.94 0.76

EfficientNetB3 0.96 0.96 0.96 0.96 0.83

Table 4.2: Prediction performance metrics of segmentation models

The two next best models after FPN + EfficientNetB3 are respectively UNet and
FCN with EfficientNetB3. Figure 4.3 on the next page shows a comparison of the
predictions of all three of these models as compared to the ground truth, as well
as to the worst model: FCN + MobileNetV2. It shows that the best two models
struggle with strongly defining the shape of buildings, wrongly including many
surrounding pixels. Interestingly, the third best model: FCN+EfficientNetB3,
performs better in this regard, showing smooth outlines of both buildings and
water. The biggest obstacle of the FCN+MobileNetV2 model is differentiating
buildings from their surrounding clutter. The predictions this model makes for
water are however satisfactory if somewhat course. Overall, the performance of
all models is acceptable as small wrongly identified patches of water are in any
case not large enough to land. Over-prediction of buildings is also preferable over
under-prediction.

A thorough analysis of the computational complexity and power consumption of
the models is currently not possible. This is because the deployment conditions
of the vision component are not yet known. For use on board of the drone, for
example, the CPU of a single board computer (SBC) could be used. Alternatively,
the model might be run on an external machine learning accelerator (e.g., the
Coral.ai USB Accelerator1 or the Intel Neural Compute Stick 22).

1Coral.ai USB Accelerator: coral.ai/products/accelerator
2Intel Neural Compute Stick:

intel.com/content/www/us/en/developer/tools/neural-compute-stick/overview
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Figure 4.3: Segmentation model predictions for sample images
GT: Ground Truth ENB3: EfficientNetB3 MNV2: MobileNetV2

4.3 Summary of Results

This chapter has discussed the performance and results of both the planner and
the vision component of Lakehopper, as implemented in chapter 3: Design &
Implementation. It found that, while further research could improve performance,
the current implementation has met its goals as set in the problem description
(section 1.2).

39



Chapter 5

Discussion & Conclusion

This final chapter will summarize the process and findings of this dissertation. To
conclude, it will review possible future avenues of research as well as the work
that needs to be done to complete the Lakehopper prototype.
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5.1 Conclusion

This dissertation set out to solve the high-level planning problem for Lakehopper,
a work-in-progress UAV prototype and its supporting systems. Using the software
created to solve this problem, Lakehopper will be able to extend the duration
of missions to, for example, observe wildlife or monitor the environment. It will
achieve this by hopping between lakes, recharging its batteries with solar cells at
each stop. This way, Lakehopper can travel between far removed points of interest
or loiter in one area for long periods of time.

To develop this software system, a comprehensive literature review was conducted.
This review uncovered the most promising algorithms and techniques for the two
software components of the high-level planning system: the planner and the vision
component.

The planner was developed with an efficient visibility graph algorithm, which
builds on existing work with optimizations and added functionality. This optimized
version can process large areas up to two times faster than the existing algorithm it
was based on. Using the generated graph, the planner’s route solver can effectively
calculate near-optimal multi-hop paths. These paths avoid built-up areas and
airspace restrictions.

The vision component was created to construct the map of lakes and buildings
that the planner relies on. It does this by using a computer vision algorithm
able to classify sections of aerial imagery as water, buildings, or ground with an
accuracy of 96%. This approach does not rely on existing maps, thus ensuring that
landing sites are neither obstructed by vegetation, nor dried up due to seasonal
changes. In other words, it can generate suitable navigational maps for any area
in North America or Europe, using just aerial imagery. This algorithm will also
be adaptable to an in-flight deployment to verify the state of a site before landing
and to check for obstacles on the water.

5.2 Future work

This dissertation can serve as the starting point for a great variety of possible
future research, from machine vision and robotics to computational geometry. The
following sections will give an overview of some of these possible directions, firstly
in research and secondly specifically with the goal to complete Lakehopper.

5.2.1 Research

As discussed in this dissertation’s introduction, the planner could be extended to
support dynamic obstacles. Additionally, it can be developed to take a weighted
area cost into account. This would allow the planner to take more nuanced
decisions. For example, it could plan a path around a wildlife conservation area,
even if flying over it is technically possible.
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The previous chapter (chapter 4: Results) showed that even the best visibility
graph algorithm in this dissertation has an quadratic-logarithmic time complexity.
As mentioned, this might be improved using a divide-and-conquer approach,
where only a subset of the graph is considered at a time. Alternatively, the
navigation graph could be generated using probabilistic roadmaps or a dynamically
expanding graph. It might also be possible to calculate shortest paths directly using
computational geometry instead of over a graph. Any of these revisions could offer
significant improvements in performance. If proven necessary by the real-world
application of the planner component, they should be explored further.

Also for the vision component, performance can be improved in various ways. For
one, the existing model implementations can be further fine-tuned. Alternatively,
completely different CNN architectures like Convnext (Dollár, M. Singh, and
Girshick 2021) and Regnet (Z. Liu et al. 2022) should be considered. Finally,
the existing dataset could be expanded, and perhaps more importantly, its labels
should be improved.

5.2.2 Lakehopper

In order to deploy the systems developed in this dissertation, the physical Lake-
hopper prototype must of course be built. This requires further research into UAV
design. Apart from the high-level planner, lower-level control routines must also
be developed (e.g., for low passes, takeoff, and landings). Finally, all software
components, as well as ground station communications, have to be integrated into
a complete system. A solution like the Robot Operating System1 (ROS) might be
useful for this.

1Robot Operating System: ros.org
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Glossary

CNN Convolutional Neural Network. A type of neural network that uses sliding
windows to recognize features in images.

GNSS Global Navigation Satellite System. Uses satellites to provide worldwide
positional information for receivers on the ground. Examples are GPS,
GLONASS, Beidou and Galileo.

NOTAM Notice to Airmen. A “notice containing information essential to person-
nel concerned with flight operations but not known far enough in advance to
be publicized by other means” (Federal Aviation Administration 2022, §1).

RPAS Remote Piloted Aircraft System. A UAS where the pilot controls the
plane externally. See also appendix A.

UAS Unoccupied Aircraft System. Conventionally, ‘Unmanned Aircraft System’.
Includes not only the UAV, but also any other equipment used. See also
appendix A.

UAV Unoccupied Aerial Vehicle. Conventionally, ‘Unmanned Aerial Vehicle’.
See also appendix A.

VTOL Vertical Take-Off and Landing. VTOL aircraft can take off vertically and
resume normal horizontal flight afterwards.
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Appendix A

Drone Terminology

Choosing a term for a flying vehicle without a pilot is – perhaps surprisingly – not
trivial.

Let’s start with a description of the concept; what are we trying to name?

The vehicle of interest in this dissertation is both flying / aerial, unoccupied (no
pilot, nor passengers), and autonomous.

Figure A.1 illustrates the relationship between these three categories. Lakehopper
falls in the center set A. Examples of vehicles in set B are autonomous cars
without passengers Thrun et al. (2006), and Bacha et al. (2008), autonomous
boats Plumet et al. (2015), Sliwka et al. (2009), and Yu, Bao, and Nonami
(2008)or technically Lakehopper while it is recharging on the water. Vehicles in set
C are for example a full-size fixed-wing airplane using an autopilot system (e.g.,
‘Garmin Autonomí’, 2022) and with passengers on board. Vehicles in category D
are for example toy radio-controlled quadcopters (like the DJI Mavic, 2022) or
military drones with a flight crew in an external command & control unit (like
the Predator Drone, 2022).

AutonomousUno
ccu

pie
d

Aerial

A

B

CD

Figure A.1: Venn diagram of vehicle categories

With the concept that we want to name in mind (vehicles in set A), let’s define
and discuss some common terms.
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Drone

The online Cambridge English Dictionary defines a drone as: “An aircraft that does
not have a pilot but is controlled by someone on the ground, used especially for
dropping bombs or for surveillance” (Cambridge English Dictionary 2022).

In a slight juxtaposition, the definition places a particular emphasis on military
applications, but a picture next to the definition shows a toy quadcopter.

The online Merriam-Webster Dictionary provides a slightly more exact definition:
“an uncrewed aircraft or ship guided by remote control or onboard computers”
(Merriam-Webster Dictionary 2022).

As indicated by the Merriam-Webster Dictionary, in its widest sense, ‘drone’ can
include any unoccupied vehicle, regardless of where it operates (in the air, around
water, or anywhere else). The term also does not differentiate between remotely
piloted and autonomous vehicles.

Laws and regulations generally avoid the term altogether. The United States Fed-
eral Aviation Administration’s1 regulation on “Small Unmanned Aircraft Systems”
(‘PART 107’) for example, never uses the term once, instead using for example
‘unmanned aircraft’ and ‘unmanned aircraft system’ (UAS) (Federal Aviation
Administration 2016). The same is true for the European Union’s regulation on
“the rules and procedures for the operation of unmanned aircraft”(The European
Commission 2022).

In figure A.1, all vehicles in the sets within ‘Unoccupied’ are drones. Importantly,
unoccupied vehicles that are not autonomous nor even aerial are also drones.

UAV

For an aerial drone, perhaps the most widely used term in the literature is
‘Unmanned Aerial Vehicle’ or UAV.

All UAVs fall into either the A or the D sets in figure A.1. While Lakehopper
would fly autonomously most of the time (and thus fall into region A), it can still
be piloted remotely by a human (and so fall into category D).

As indicated, the first letter of ‘UAV’ usually stands for ‘Unmanned’. This term
however has the unnecessary implication that the occupant(s) of the aircraft (if
they were to exist) would be men (Joyce, Anderson, and Bartolo 2021).

As an alternative for ‘manned’, NASA has introduced the term ‘crewed’ (Lak-
dawalla 2022; Garber 2012). ‘Uncrewed’, like ‘Unmanned’ starts with a ‘U’.
However, it could imply that the vehicle has no crew. This is not necessarily true
(e.g., the Predator Drone’s command & control unit with a multi-person crew
(United States Air Force 2022)).

The best alternative term seems to be ‘Unoccupied’, as it states exactly what
we want to convey, and nothing more (Allan Poe 1845). As such, save for this

1https://www.faa.gov/
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section, all occurrences of ‘UAV’ in this dissertation mean ‘Unoccupied Aerial
Vehicle’.

MAV

A ‘Micro Aerial Vehicle’ (MAV) is simply a miniature UAV. All MAVs are UAVs
and fall into the same sets in figure A.1 (A & D).

UAS

An ‘Unoccupied Aircraft System’ includes not only the UAV, but also any other
equipment used. This equipment is usually limited to the electronics to control
the aircraft, like a radio remote. In a broad sense however, it could also include
another UAV acting as a communication relay (Boyang Li et al. 2016).

An aircraft that is part of a UAS naturally falls into the same sets as a UAV does
(A and D).

RPAS

A ‘Remote Piloted Aircraft System’ is a UAS that is specifically not autonomous.
While this term could technically also include systems with aircraft carrying
passengers 2, this is not usually what’s referred to.

In figure A.1, the aircraft of an RPAS is part of set D.

Conclusion

‘Drone’ is likely the best term for the field of unoccupied vehicles in general, as
many techniques are applicable to all types of drones, whether they are aquatic,
aerial, or part of any other medium. Path planning, for example, is broadly
applicable to aerial and ground vehicles alike, as are ground station communication
technologies.

Nonetheless, a more specific term would always be preferable. ‘UAV’ fills this role,
including all drones that are also (at least partly) aerial. This dissertation uses
both terms interchangeably to refer to Lakehopper.

The most widely used term to specify that a UAV is also autonomous seems to
simply be ‘Autonomous UAV’. Any compound initialism like ‘AUAV’ seemingly
hasn’t caught on.

2In general this concept is usually referred to as ‘teleguidance’.
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Appendix B

Source Code Overview

All source code written in connection with this dissertation is available as an
online Git repository via github.com/ubipo/lakehopper. All datasets used for
development and machine learning can be obtained by contacting Pieter Fiers
<pieter@pfiers.net>.

The planner component’s backend was written in approximately 1,816 lines of
Rust code, spread over 31 files (not including blank lines, comments, etc.). Its
browser UI was written in approximately 535 lines of TypeScript code (and some
HTML/CSS).

The vision component was written in approximately 1,331 lines of Python code.

The (abridged) structure of the Git repository is as follows:

Root of Git repository
design/: design of drone; not applicable to this dissertation
planner/: planner component

ui/: browser user interface (HTML/CSS/Typescript)
src/: backend websocket server / planner algorithms (Rust)

server/: websocket handler functionality
nav_graph/: visibility graph / shortest path / planner algorithms
mpi/: MultiPolygonIndex (aids with computational geometry problems)
main.rs: server entrypoint
droneguid.rs: Skeyes geozone restricted airspace client
crs.rs: coordinate reference system conversions
...: other source files

scripts/: miscellaneous scripts (Python)
data/: planner development dataset, not included (too large)
...: various auxiliary files

vision/: vision component
src/: vision component source code (Python)

lakehopper_semseg/: vision component Python module
preprocess/: preprocessing scripts
models/: model definitions
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map/: map generation
visualize.py: visualization helper functions
train.ipynb: training notebook
tpu.py: TPU connection functions
dataset.py: dataset loading functions
...: other source files

scripts/: miscellaneous scripts (Python)
datasets/: machine learning datasets, not included (too large)
...: various auxiliary files

...: various auxiliary files
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